Neurological Deficits among Beta-Thalassemia Patients and its Possible Therapeutic Intervention : A Comprehensive Review

Authors

  • Fahad Hassan Shah Centre of Biotechnology and Microbiology, University of Peshawar. https://orcid.org/0000-0001-6592-9812
  • Jawaria Idrees Islamia College University Peshawar, Pakistan
  • Syed Turab Ali Shah Centre of Biotechnology and Microbiology, University of Peshawar, Pakistan
  • Rimsha Khan The University of Lahore, Islamabad Campus, Pakistan
  • Affifa Tahir Khan Centre of Biotechnology and Microbiology, University of Peshawar, Pakistan
  • Saad Salman The University of Lahore, Islamabad Campus, Pakistan
  • Abid Ali Khan Centre of Biotechnology and Microbiology, University of Peshawar, Pakistan.

DOI:

https://doi.org/10.36570/jduhs.2020.2.831

Keywords:

Beta Thalassemia, Neurological Deficits, Treatment, Cognitive impairment, Extramedullary Hematopoiesis, Evoked Potential, Neuropathy

Abstract

Beta-thalassemia is a genetico-haematological disorder that affects the integrity, structure, and survival of red blood cells due to deleterious mutation in the β-globulin chain of hemoglobin. Other than blood disorder, this condition gives rise to numerous neurological and haematophysiological conditions which have not been fully discussed yet. These conditions include extramedullary hematopoiesis, evoked potential (Sensory, Auditory and Visual), neuropathy and myopathy and predisposition to the hypercoagulable state leading to stroke. Moreover, most opted therapy to alleviate this condition intrigue neurotoxicity that requires clinician's round the clock attention. Beta thalassemia remains an incurable disease, and various therapies have been introduced to fulfill the body's blood requirement. But this condition implicitly gives rise to a damaging range of symptoms that cannot be overlooked. Therefore, our review encompasses all those anomalies associated with beta-thalassemia and its probable curative therapy. Keywords: Beta thalassemia, Neurological deficits, Cognitive impairment, Extramedullary hematopoiesis, Evoked potential, Neuropathy.

 

Downloads

Download data is not yet available.

References

1. Origa R. β-Thalassemia. Genet Med 2017;19:609-19. doi: 10.1038/gim.2016.173.
2. Cao A, Galanello R. Beta-thalassemia. Genet Med 2010; 12:61-76. doi: 10.1097/GIM.0b013e3181cd68ed.
3. Hossain MS, Raheem E, Sultana TA, Ferdous S, Nahar N, Islam S, et al. Thalassemias in South Asia: clinical lessons learnt from Bangladesh. Orphanet J Rare Dis 2017; 12: 93. doi: 10.1186/s13023-017-0643-z.
4. Hamideh D, Alvarez O. Sickle cell disease related mort-ality in the United States (1999–2009). Pediatr Blood Cancer 2013; 60:1482-6. doi: 10.1002/pbc.24557.
5. Taher AT, Porter JB, Kattamis A, Viprakasit V, Cappellini MD. Efficacy and safety of iron-chelation therapy with deferoxamine, deferiprone, and deferasirox for the treatment of iron-loaded patients with nontransfusion-dependent thalassemia syndromes. Drug Des Devel Ther 2016; 10:4073-8. doi: 10.2147/DDDT.S117080.
6. Senol SP, Tiftik EN, Unal S, Akdeniz A, Tasdelen B, Tunctan B. Quality of life, clinical effectiveness, and satisfaction in patients with beta thalassemia major and sickle cell anemia receiving deferasirox chelation therapy. J Basic Clin Pharm 2016; 7: 49-59. doi: 10.4103/0976-0105.177706
7. Ansari S, Azarkeivan A, Miri-Aliabad G, Yousefian S, Rostami T. Comparison of iron chelation effects of deferoxamine, deferasirox, and combination of deferoxamine and deferiprone on liver and cardiac T2* MRI in thalassemia maior. Casp J Intern Med 2017; 8:159-64. doi: 10.22088/cjim.8.3.159
8. Saliba AN, Harb AR, Taher AT. Iron chelation therapy in transfusion-dependent thalassemia patients: current strategies and future directions. J Blood Med 2015; 6:197-209. doi: 10.2147/JBM.S72463.eCollection 2015.
9. Argyropoulou MI, Astrakas L. MRI evaluation of tissue iron burden in patients with beta-thalassaemia major. Pediatr Radiol 2007; 37:1191-309. doi: 10.1007/s00247-007-0567-1.
10. Jackson LH, Vlachodimitropoulou E, Shangaris P, Roberts TA, Ryan TM, Campbell-Washburn AE, et al. Non-invasive MRI biomarkers for the early assessment of iron overload in a humanized mouse model of β-thalassemia. Sci Rep 2017; 7:43439. doi: 10.1038/srep43439.
11. Papakonstantinou O, Drakonaki EE, Maris T, Vasiliadou A, Papadakis A, Gourtsoyiannis N. MR imaging of spleen in beta-thalassemia major. Abdom Imaging 2015; 40:2777-82. doi: 10.1007/s00261-015-0461-5.
12. Zafeiriou DI, Economou M, Athanasiou-Metaxa M. Neurological complications in β-thalassemia. Brain Dev 2006; 28:477-81. doi: 10.1016/j.braindev.2006. 02.005.
13. Nemtsas P, Arnaoutoglou M, Perifanis V, Koutsouraki E, Orologas A. Neurological complications of beta-thalassemia. Ann Hematol 2015; 94:1261-5. doi: 10.1007/s00277-015-2378-z.
14. Teli A, Economou M, Rudolf J, Tzovaras F, Gourtsa V, Kondou A, et al. Subclinical central nervous system involvement and thrombophilic status in young thalassemia intermedia patients of Greek origin. Blood Coagul Fibrinolysis 2012; 23:195-202. doi: 10.1097/MBC.0b013e32834f0ac0.
15. Rigano P, Pecoraro A, Calvaruso G, Steinberg MH, Iannello S, Maggio A. Cerebrovascular events in sickle cell-beta thalassemia treated with hydroxyurea: A single center prospective survey in adult Italians. Am J Hematol 2013; 88:E261-4. doi: 10.1002/ajh.23531.
16. Sohawon D, Lau KK, Lau T, Bowden DK. Extramedull- ary haematopoiesis: A pictorial review of its typical and atypical locations. J Med Imaging Radiat Oncol 2012; 56:538-44. doi: 10.1111/j.1754-9485.2012. 02397.x.
17. Orphanidou-Vlachou E, Tziakouri-Shiakalli C, Georgia-des CS. Extramedullary Hemopoiesis. Semin Ultrasound CT MR 2014; 35:255-62. doi: 10.1053/j.sult.2013.12.001.
18. Zhu G, Wu X, Zhang X, Wu M, Zeng Q, Li X. Clinical and imaging findings in thalassemia patients with extramedullary hematopoiesis. Clin Imaging 2012; 36:475-82. doi: 10.1016/j.clinimag.2011.11.019.
19. Gatto I, Terrana V, Biondi L. Compression of the spinal cord due to proliferation of bone marrow in epidural space in a splenectomized person with Cooley's disease. Haematologica 1954; 38:61-76. doi: 10.1016/s0950-3536(05)80073-3.
20. Haidar R, Mhaidli H, Taher AT. Paraspinal extramedull-ary hematopoiesis in patients with thalassemia intermedia. Eur Spine J 2010; 19:871-8. DOI: 10.1007/s00586-010-1357-2
21. Liaska A, Petrou P, Georgakopoulos CD, Diamanti R, Papaconstantinou D, Kanakis MG, et al. β-Thalassemia and ocular implications: a systematic review. BMC Ophthalmol 2016; 16:102. DOI: 10.1186/s12886-016-0285-2
22. Faramarzi A, Karimi M, Heydari ST, Shishegar M, Kav-iani M. Frequency of sensory neural hearing loss in major Beta-thalassemias in southern iran. Iran J Pediatr 2010; 20 3:308
23. Chiappa KH, Ropper AH. Evoked potentials in clinical medicine. N Engl J Med 1982; 306:1140-50. DOI: 10.1056/NEJM198205133061904
24. Badfar G, Mansouri A, Shohani M, Karimi H, Khalighi Z, Rahmati S, et al. Hearing loss in Iranian thalassemia major patients treated with deferoxamine: A systematic review and meta-analysis. Casp J Intern Med 2017; 8:239-49. DOI: 10.22088/cjim.8.4.239
25. El-Shazly AA, Ebeid WM, Elkitkat RS, Deghedy MR. Electroretinographic nd Visual-evoked potential changes in relation to chelation modality in children with thalassemia. Retina 2017; 37:1178-75. DOI: 10.1097/IAE.0000000000001315
26. Wong V, Li A, Lee AC. Neurophysiologic study of β-thalassemia patients. J Child Neurol 1993; 8:330-5. DOI: 10.1177/088307389300800407
27. Azouz HG, Hassab HM, Elghany HM, Abdallah MA. Neurophysiologic evaluation of children with beta-thalassemia major. J Pediatr Neurol 2015; 13:110-5.
28. Raz S, Koren A, Levin C. Attention response inhibition and brain event-related potential alterations in adults with beta-thalassaemia major. Br J Haematol 2019; 186:580-91. DOI: 10.1111/bjh.15957
29. Triantafyllou N, Fisfis M, Sideris G, Triantafyllou D, Rombos A, Vrettou H, et al. Neurophysiological and neuro-otological study of homozygous beta-thalassemia under long-term desferrioxamine (DFO) treatment. Acta Neurol Scand 1991; 83:306-8.
DOI: 10.1111/bjh.15957
30. Logothetis J, Constantoulakis M, Economidou J, Stefanis C, Hakas P, Augoustaki O, et al. Thalassemia major (homozygous beta‐thalassemia). Neurology 1972; 22:294-304. DOI: 10.1212/wnl.22.3.294
31. Nemtsas P, Arnaoutoglou M, Perifanis V, Koutsouraki E, Spanos G, Arnaoutoglou N, et al. Polyneuropathy and myopathy in beta-thalassemia major patients. Ann Hematol 2018; 97:899-904. DOI: 10.1007/s00277-018-3251-7
32. Stamboulis E, Vlachou N, Drossou-Servou M, Tsaftari-dis P, Koutsis G, Katsaros N, et al. Axonal sensorimotor neuropathy in patients with β-thalassaemia. J Neurol Neurosurg Psychiatry 2004; 75:1483-6. DOI: 10.1136/jnnp.2003.024794
33. Papanastasiou DA, Papanicolaou D, Magiakou AM, Beratis NG, Tzebelikos E, Papapetropoulos T. Peripheral neuropathy in patients with beta-thalassaemia. J Neurol Neuro Surg Psychiatry 1991; 54:997-1000. DOI: 10.1136/jnnp.54.11.997
34. Zafeiriou DI, Kousi AA, Tsantali CT, Kontopoulos EE, Augoustidou-Savvopoulou PA, Tsoubaris PD, et al. Neurophysiologic evaluation of long-term desferrioxamine therapy in beta-thalassemia patients. Pediatr Neurol 1998; 18:420-4. DOI: 10.1016/s0887-8994(98)00004-6
35. Sawaya RA, Zahed L,Tahir A. Peripheral neuropathy in thalassemia. Ann Saudi Med 2006; 26:358-63. DOI: 10.5144/0256-4947.2006.358
36. Kaushik JS, Verma A, Sharma H, Bala K, Dabla S, Yadav A. Peripheral Neuropathy in Thalassemia Major. Indian J Pediatr 2019; 86:395-6. DOI: 10.1007/s12098-018-2797-7
37. Sirachainan N. Thalassemia and the hypercoagulable state. Thromb Res 2013; 132:637-41.
DOI: 10.1016/j.thromres.2013.09.029
38. Taher AT, Otrock ZK, Uthman I, Cappellini MD, Thalassemia and hypercoagulability. Blood Rev 2008; 22:283-92. DOI: 10.1016/j.blre.2008.04.001
39. Vassilopoulou S, Anagnostou E, Paraskevas G, Spen-gos K. Etiology and treatment of ischaemic stroke in patients with β-thalassemia major. Eur J Neurol 2011; 18:1426-8. DOI: 10.1111/j.1468-1331.2011.03431.x
40. Incorpora G, Di-Gregorio F, Romeo MA, Pavone P, Trifiletti RR, Parano E. Focal neurological deficits in children with β-thalassemia major. Neuropediatrics 1999; 30:45-48. DOI: 10.1055/s-2007-973457
41. Pignatti CB, Carnelli V, Caruso V, Dore F, De Mattia D, Di Palma A, et al. Thromboembolic events in beta thalassemia major: an Italian multicenter study. Acta Haematol 1998; 99:76-9. DOI: 10.1159/000040814
42. Musallam KM, Taher AT, Karimi M, Rachmilewitz EA. Cerebral infarction in β-thalassemia intermedia: Breaking the silence. Thromb Res 2012; 130:695-702. DOI: 10.1016/j.thromres.2012.07.013
43. Karimi M, Khanlari M, Rachmilewitz EA. Cerebrova-scular accident in β‐thalassemia major (β‐TM) and β‐thalassemia intermedia (β‐TI). Am J Hematol 2008; 83:77-9. DOI: 10.1002/ajh.20938
44. Chin RI, Monda JJ, Sheth M, Ogle W, Merenda G, De D. Papillary fibroelastoma as a cause of cardiogenic embolic stroke in a β-thalassemia patient: case report and literature review. Case reports Cardiol 2017; 2017:8185601. DOI: 10.1155/2017/8185601
45. Kang JH, Hargett CW, Sevilis T, Luedke M. Sickle cell disease, fat embolism syndrome, and “starfield” pattern on mri. Neurol Clin Pract 2018; 8:162 LP-4. DOI: 10.1212/CPJ.0000000000000443
46. Karimi M, Bagheri H, Rastgu F, Rachmilewitz EA. Magnetic resonance imaging to determine the incidence of brain ischaemia in patients with β-thalassaemia intermedia. Thromb Haemost 2010; 103:989–93. DOI: 10.1160/TH09-09-0661
47. Taher AT, Musallam KM, Karimi M, El-Beshlawy A, Belhoul K, Daar S, et al. Splenectomy and thrombosis: the case of thalassemia intermedia. J Thromb Haemost 2010; 8:2152-8. DOI: 10.1111/j.1538-7836.2010.03940.x
48. Taher AT, Musallam KM, Nasreddine W, Hourani R, In-ati A, Beydoun A.Asymptomatic brain magnetic resonance imaging abnormalities in splenectomized adults with thalassemia intermedia. J Thromb Haemost 2010; 8:54-9.
DOI: 10.1111/j.1538-7836.2010.03940.x
49. Delehaye E, Capobianco S, Bertetto IB, Meloni F. Distortion-product otoacoustic emission: Early detection in deferoxamine induced ototoxicity. Auris Nasus Larynx 2008; 35:198-202.
DOI: 10.1016/j.anl.2007.05.001
50. Bhoiwala DL, Dunaief JL. Retinal abnormalities in β-thalassemia major. Surv Ophthalmol 2016; 61:33-50. DOI: 10.1016/j.survophthal.2015.08.005
51. Orton RB, Sulh HM. Ocular and auditory toxicity of longterm, high-dose subcutaneous deferoxamine therapy. Can J Ophthalmol 1985; 20:153-6.
52. Orsini A. Nervous manifestations associated with thalassemia (critical study of the concept of thalassemic neurohemolytic syndrome). Pediatrie 1967;22:771-84.
53. Monastero R, Monastero G, Ciaccio C, Padovani A, Camarda R. Cognitive deficits in beta‐thalassemia major. Acta Neurol Scand 2000; 102:162-8.
54. Economou M, Zafeiriou DI, Kontopoulos E, Gompakis N, Koussi A, Perifanis V, et al. Neurophysiologic and intellectual evaluation of beta-thalassemia patients. Brain Dev 2006; 28:14-8. DOI: 10.1016/j.braindev.2005.03.006
55. Metafratzi Z, Argyropoulou MI, Kiortsis DN, Tsampo-ulas C, Chaliassos N, Efremidis SC. T2 relaxation rate of basal ganglia and cortex in patients with β-thalassaemia major. Br J Radiol 2001; 74:407-10. DOI: 10.1259/bjr.74.881.740407
56. Duman O, Arayici S, Fettahoglu C, Eryilmaz N, Ozkay-nak S, Yesilipek A, et al. Neurocognitive function in patients with β-thalassemia major. Pediatr Int 2011; 53:519-23. DOI: 10.1111/j.1442-200X.2010.03279.x
57. Jokinen H, Lipsanen J, Schmidt R, Fazekas F, Gouw AA, van der Flier WM, et al. Brain atrophy accelerates cognitive decline in cerebral small vessel disease. Neurology 2012; 78:1785 LP-92. DOI: 10.1212/WNL.0b013e3182583070
58. El-Beshlawy A, El-Ghamrawy M. Recent trends in treatment of thalassemia. Blood Cells Mol Dis 2019; 76:53-8. DOI: 10.1016/j.bcmd.2019.01.006
59. Ramos E, Ruchala P, Goodnough JB, Kautz L, Peza GC, Nemeth E, et al. Minihepcidins prevent iron overload in a hepcidin-deficient mouse model of severe hemochromatosis. Blood 2012; 120:3829-36. DOI: 10.1182/blood-2012-07-440743

Downloads

Published

2020-08-30

How to Cite

Shah, F. H., Idrees, J., Ali Shah, S. T., Khan, R., Khan, A. T., Salman, S., & Khan, A. A. (2020). Neurological Deficits among Beta-Thalassemia Patients and its Possible Therapeutic Intervention : A Comprehensive Review. Journal of the Dow University of Health Sciences (JDUHS), 14(2), 83–90. https://doi.org/10.36570/jduhs.2020.2.831

Issue

Section

Review Article