Impact of Artificial Intelligence integration on Surgical Outcome
DOI:
https://doi.org/10.36570/jduhs.2021.2.983Keywords:
Artificial intelligence, Robotic surgery, Surgical decision making, Machine learning, Deep learningAbstract
Background: Artificial Intelligence (AI) is improving surgical practice with the technical advancement in imagery, navigation and robotic systems.
Objectives: This review is aimed at assessing the role of artificial intelligence in surgical decision making during preoperative, intraoperative and postoperative periods to emphasize need of evidence-based protocols in this regard.
Methods: The search strategy involving key terms pertaining to the concepts was utilized. In order to reach maximum sensitivity, a combination of the terms such as “Artificial intelligence”, “robotic surgery”, “surgical decision making”, “machine learning”, “deep learning” and “AI” were considered. Only articles that specifically discussed the role of artificial intelligence in surgical decision making were included.
Results: Fifty five studies were retrieved with exclusion of forty six of them according to inclusion criteria. Thus, nine studies were included in the final review which were arranged in table to aid data review and analysis.
Conclusion: The advancement of AI has turned modern medicine into a more effective and efficient practice to manage both acute and chronic illnesses. Important advances were made in pre-operative preparation, intra-operative support and post-operative care by using these approaches.
Downloads
References
-Raymond BL, Wanderer JP, Hawkins AT, Geiger TM, Ehrenfeld JM, Stokes JW, et al. Use of the American College of Surgeons National Surgical Quality Improvement Program Surgical Risk Calculator During Preoperative Risk Discussion: The Patient Perspective. Anesth Analg 2019; 128:643-50. doi: 10.1213/ANE.0000000000003718
-Lubitz AL, Chan E, Zarif D, Ross H, Philp M, Goldberg AJ, et al. American College of Surgeons NSQIP Risk Calculator Accuracy for Emergent and Elective Colorectal Operations. J Am Coll Surg 2017; 225:601-11. doi: 10.1016/j.jamcollsurg.2017.07.1069
-Hyde LZ, Valizadeh N, Al-Mazrou AM, Kiran RP. ACS-NSQIP risk calculator predicts cohort but not individual risk of complication following colorectal resection. Am J Surg 2019; 218:131-5. doi: 10.1016/j.amjsurg.2018.11.017
-Leeds IL, Rosenblum AJ, Wise PE, Watkins AC, Goldblatt MI, Haut ER, et al. Eye of the beholder: Risk calculators and barriers to adoption in surgical trainees. Surgery 2018; 164:1117-23. doi: 10.1016/j.surg.2018.07.002
-Blumenthal-Barby JS, Krieger H. Cognitive biases and heuristics in medical decision making: a critical review using a systematic search strategy. Med Decis Making 2015; 35:539-57. doi: 10.1177/0272989X14547740
-Che Z, Purushotham S, Khemani R, Liu Y. Interpretable Deep Models for ICU Outcome Prediction. AMIA Annu Symp Proc 2017; 2016:371-80.
-Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med 2009; 6:e1000100. doi: 10.1371/journal.pmed.1000100
-Bagnall NM, Pring ET, Malietzis G, Athanasiou T, Faiz OD, Kennedy RH, et al. Perioperative risk prediction in the era of enhanced recovery: a comparison of POSSUM, ACPGBI, and E-PASS scoring systems in major surgical procedures of the colorectal surgeon. Int J Colorectal Dis 2018; 33:1627-34. doi: 10.1007/s00384-018-3141-4
-Adhikari L, Ozrazgat-Baslanti T, Ruppert M, Madushani RW, Paliwal S, Hashemighouchani H, et al. Improved predictive models for acute kidney injury with IDEA: Intraoperative Data Embedded Analytics. PLoS One 2019; 14:e0214904. doi: 10.1371/journal.pone.0214904
-Bertsimas D, Dunn J, Velmahos GC, Kaafarani HMA. Surgical Risk Is Not Linear: Derivation and Validation of a Novel, User-friendly, and Machine-learning-based Predictive OpTimal Trees in Emergency Surgery Risk (POTTER) Calculator. Ann Surg 2018; 268:574-83. doi: 10.1097/SLA.0000000000002956
-Bihorac A, Ozrazgat-Baslanti T, Ebadi A, Motaei A, Madkour M, Pardalos PM, et al. MySurgeryRisk: Development and Validation of a Machine-learning Risk Algorithm for Major Complications and Death After Surgery. Ann Surg 2019; 269:652-62. doi: 10.1097/SLA.0000000000002706
-Brennan M, Puri S, Ozrazgat-Baslanti T, Feng Z, Ruppert M, Hashemighouchani H, et al. Comparing clinical judgment with the MySurgeryRisk algorithm for preoperative risk assessment: A pilot usability study. Surgery 2019; 165:1035-45. doi: 10.1016/j.surg.2019.01.002
-Koyner JL, Carey KA, Edelson DP, Churpek MM. The Development of a Machine Learning Inpatient Acute Kidney Injury Prediction Model. Crit Care Med 2018;46:1070-7. doi: 10.1097/CCM.0000000000003123
-Delahanty RJ, Kaufman D, Jones SS. Development and Evaluation of an Automated Machine Learning Algorithm for In-Hospital Mortality Risk Adjustment Among Critical Care Patients. Crit Care Med 2018; 46:e481-e488. doi: 10.1097/CCM.0000000000003011
-Clark DE, Fitzgerald TL, Dibbins AW. Procedure-based postoperative risk prediction using NSQIP data. J Surg Res 2018; 221:322-7. doi: 10.1016/j.jss.2017.09.003
-Stacey D, Légaré F, Lewis K, Barry MJ, Bennett CL, Eden KB, et al. Decision aids for people facing health treatment or screening decisions. Cochrane Database Syst Rev 2017 ; 4:CD001431. doi: 10.1002/14651858.CD001431
-Knops AM, Legemate DA, Goossens A, Bossuyt PM, Ubbink DT. Decision aids for patients facing a surgical treatment decision: a systematic review and meta-analysis. Ann Surg 2013; 257: 860-6. doi: 10.1097/SLA.0b013e3182864fd6
-Hashimoto DA, Rosman G, Rus D, Meireles OR. Artificial Intelligence in Surgery: Promises and Perils. Ann Surg 2018; 268:70-6. doi: 10.1097/SLA.0000000000002693
-Twinanda AP, Shehata S, Mutter D, Marescaux J, de Mathelin M, Padoy N. EndoNet: A Deep Architecture for Recognition Tasks on Laparoscopic Videos. IEEE Trans Med Imaging 2017; 36:86-97. doi: 10.1109/TMI.2016.2593957
-Kendale S, Kulkarni P, Rosenberg AD, Wang J. Supervised Machine-learning Predictive Analytics for Prediction of Postinduction Hypotension. Anesthesiology 2018; 129:675-8. doi: 10.1097/ALN.0000000000002374
-Komorowski M, Celi LA, Badawi O, Gordon AC, Faisal AA. The Artificial Intelligence Clinician learns optimal treatment strategies for sepsis in intensive care. Nat Med 2018 ; 24:1716-20. doi: 10.1038/s41591-018-0213-5
-Henry KE, Hager DN, Pronovost PJ, Saria S. A targeted real-time early warning score (TREWScore) for septic shock. Sci Transl Med 2015; 7:299ra122. doi: 10.1126/scitranslmed.aab3719
-Hao Du, Ghassemi MM, Mengling Feng. The effects of deep network topology on mortality prediction. Annu Int Conf IEEE Eng Med Biol Soc 2016; 2016:2602-05. doi: 10.1109/EMBC.2016.7591263
-Chilamkurthy S, Ghosh R, Tanamala S, Biviji M, Campeau NG, et al. Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study. Lancet 2018; 392:2388-96. doi: 10.1016/S0140-6736(18)31645-3
- Meyer A, Zverinski D, Pfahringer B, Kempfert J, Kuehne T, Sündermann SH, et al. Machine learning for real-time prediction of complications in critical care: a retrospective study. Lancet Respir Med 2018; 6:905-14. doi: 10.1016/S2213-2600(18)30300-X
- Li X, Zhang S, Zhang Q, Wei X, Pan Y, Zhao J, et al. Diagnosis of thyroid cancer using deep convolutional neural network models applied to sonographic images: a retrospective, multicohort, diagnostic study. Lancet Oncol 2019; 20:193-201. doi: 10.1016/S1470-2045(18)30762-9
- Rubinstein E, Salhov M, Nidam-Leshem M, White V, Golan S, Baniel J, et al. Unsupervised tumor detection in Dynamic PET/CT imaging of the prostate. Med Image Anal 2019; 55:27-40. doi: 10.1016/j.media.2019.04.001
-Gibson E, Giganti F, Hu Y, Bonmati E, Bandula S, Gurusamy K, et al. Automatic Multi-Organ Segmentation on Abdominal CT With Dense V-Networks. IEEE Trans Med Imaging 2018; 37:1822-34. doi: 10.1109/TMI.2018.2806309
- Winkels M, Cohen TS. Pulmonary nodule detection in CT scans with equivariant CNNs. Med Image Anal 2019; 55:15-26. doi: 10.1016/j.media.2019.03.010
-Cool D, Downey D, Izawa J, Chin J, Fenster A. 3D prostate model formation from non-parallel 2D ultrasound biopsy images. Med Image Anal 2006; 10:875-87. doi: 10.1016/j.media.2006.09.001
-Toth D, Pfister M, Maier A, Kowarschik M, Hornegger J. Adaption of 3D Models to 2D X-Ray Images during Endovascular Abdominal Aneurysm Repair. Medical Image Computing and Computer-Assisted Intervention. Springer Cham 2015; 9349. 339–46. doi.org/10.1007/978-3-319-24553-9_42
-Liu F, Zhou Z, Samsonov A, Blankenbaker D, Larison W, Kanarek A, et al. Deep Learning Approach for Evaluating Knee MR Images: Achieving High Diagnostic Performance for Cartilage Lesion Detection. Radiology 2018; 289:160-9. doi: 10.1148/radiol.2018172986
-Gijsberts CM, Groenewegen KA, Hoefer IE, Eijkemans MJ, Asselbergs FW, Anderson TJ, et al. Race/Ethnic Differences in the Associations of the Framingham Risk Factors with Carotid IMT and Cardiovascular Events. PLoS One 2015; 10:e0132321. doi: 10.1371/journal.pone.0132321
-Mountney P, Stoyanov D, Davison A, Yang GZ. Simultaneous stereoscope localization and soft-tissue mapping for minimal invasive surgery. Med Image Comput Comput Assist Interv 2006; 9:347-54. doi: 10.1007/11866565_43
-Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med 2019; 25:44-56. doi: 10.1038/s41591-018-0300-7
-Mirnezami R, Ahmed A. Surgery 3.0, artificial intelligence and the next-generation surgeon. Br J Surg 2018; 105:463-5. doi: 10.1002/bjs.10860
-Bouget D, Benenson R, Omran M, Riffaud L, Schiele B, Jannin P. Detecting Surgical Tools by Modelling Local Appearance and Global Shape. IEEE Trans Med Imaging 2015; 34:2603-17. doi: 10.1109/TMI.2015.2450831
-Shvets AA, Rakhlin A, Kalinin AA, Iglovikov VI. Automatic instrument segmentation in robot-assisted surgery using deep learning. In2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA) 2018; 624-8.
-Islam M, Atputharuban DA, Ramesh R, Ren H. Real-time instrument segmentation in robotic surgery using auxiliary supervised deep adversarial learning. IEEE Robotics and Automation Letters 2019; 4:2188-95.
Published
Versions
- 2021-08-16 (3)
- 2021-08-12 (1)
How to Cite
Issue
Section
License
Copyright (c) 2021 Muhammad Umar
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Articles published in the Journal of Dow University of Health Sciences are distributed under the terms of the Creative Commons Attribution Non-Commercial License https://creativecommons.org/ licenses/by-nc/4.0/. This license permits use, distribution and reproduction in any medium; provided the original work is properly cited and initial publication in this journal.